Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available July 11, 2026
-
Free, publicly-accessible full text available July 9, 2026
-
Copper-catalyzed radical C(sp3)‒N coupling has become a major focus in synthetic catalysis over the past decade. However, achieving this reaction manifold by using enzymes has remained elusive. In this study, we introduce a photobiocatalytic approach for radical benzylic C(sp3)‒N coupling using a copper-substituted nonheme enzyme. Using rhodamine B as a photoredox catalyst, we identified a copper-substituted phenylalanine hydroxylase that facilitates enantioconvergent decarboxylative amination betweenN-hydroxyphthalimide esters and anilines. Directed evolution remodeled the active site, resulting in high enantioselectivities for most substrates. On the basis of molecular modeling and mechanistic studies, we propose that the enzyme accommodates a copper-anilide complex that reacts with a benzylic radical. This study expands the scope of non-natural biocatalytic transition metal catalysis to copper-catalyzed radical coupling.more » « lessFree, publicly-accessible full text available August 14, 2026
-
Free, publicly-accessible full text available March 31, 2026
-
Free, publicly-accessible full text available February 28, 2026
-
Tropical cyclones can severely disturb shallow, continental shelf ecosystems, affecting habitat structure, diversity, and ecosystem services. This study examines the impacts of Hurricane Ian on the Southwest Florida Shelf by assessing water quality, substrate type, and epibenthic and microbial community characteristics at eight sites (3 to 20 m in depth) before and after Ian’s passage in 2022. Hurricane Ian drastically changed substrate type and biotic cover, scouring away epibenthos and/or burying hard substrates in mud and sand, especially at mid depth (10 m) sites (92–98% loss). Following Hurricane Ian, the greatest losses were observed in fleshy macroalgae (58%), calcareous green algae (100%), seagrass (100%), sessile invertebrates (77%), and stony coral communities (71%), while soft coral (17%) and sponge communities (45%) were more resistant. After Ian, turbidity, chromophoric dissolved organic matter, and dissolved inorganic nitrogen and phosphorus increased at most sites, while total nitrogen, total phosphorus, and silica decreased. Microbial communities changed significantly post Ian, with estuary-associated taxa expanding further offshore. The results show that the shelf ecosystem is highly susceptible to disturbances from waves, deposition and erosion, and water quality changes caused by mixing and coastal discharge. More routine monitoring of this environment is necessary to understand the long-term patterns of these disturbances, their interactions, and how they influence the resilience and recovery processes of shelf ecosystems.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract We investigate the consequences of nonideal chemical interaction between silicate and overlying hydrogen-rich envelopes for rocky planets using basic tenets of phase equilibria. Based on our current understanding of the temperature and pressure conditions for complete miscibility of silicate and hydrogen, we find that the silicate-hydrogen binary solvus will dictate the nature of atmospheres and internal layering in rocky planets that garnered H2-rich primary atmospheres. The temperatures at the surfaces of supercritical magma oceans will correspond to the silicate-hydrogen solvus. As a result, the radial positions of supercritical magma ocean–atmosphere interfaces, rather than their temperatures and pressures, should reflect the thermal states of these planets. The conditions prescribed by the solvus influence the structure of the atmosphere, and thus the transit radii of sub-Neptunes. Separation of iron-rich metal to form metal cores in sub-Neptunes and super-Earths is not assured due to prospects for neutral buoyancy of metal in silicate melt induced by dissolution of H, Si, and O in the metal at high temperatures.more » « less
An official website of the United States government
